About Us

About Us
Muhammad Shamoeel is an educationist blogger, who intends to support the students in chaos, who are yet amateur in their O level. He is himself a student who had a hard time in study, though, he has an ambition to help low-line students to jump up.

Tuesday, September 22, 2015

Excretion

Share & Comment
Excretory Systems



The energy required for maintenance and proper functioning of the human body is supplied by food. After it is broken into fragments by chewing (see Teeth) and mixed with saliva, digestion begins. The food passes down the gullet into the stomach, where the process is continued by the gastric and intestinal juices. Thereafter, the mixture of food and secretions, called chyme, is pushed down the alimentary canal by peristalsis, rhythmic contractions of the smooth muscle of the gastrointestinal system.



The contractions are initiated by the parasympathetic nervous system; such muscular activity can be inhibited by the sympathetic nervous system. Absorption of nutrients from chyme occurs mainly in the small intestine; unabsorbed food and secretions and waste substances from the liver pass to the large intestines and are expelled as feces. Water and water-soluble substances travel via the bloodstream from the intestines to the kidneys, which absorb all the constituents of the blood plasma except its proteins. The kidneys return most of the water and salts to the body, while excreting other salts and waste products, along with excess water, as urine.


Intestines

Intestine, also bowels, in higher animals, the portion of the digestive tract between the stomach and anus. In humans the intestine is divided into two major sections: the small intestine, which is about 6 m (20 ft) long, where the most extensive part of digestion occurs and where most food products are absorbed; and the large intestine, which has a larger diameter and is about 1.5 m (5 ft) long, where water is absorbed and from which solid waste material is excreted (see Digestive System; Feces).
The small intestine, which is coiled in the center of the abdominal cavity (see Abdomen), is divided into three sections. The upper portion includes the pylorus, the opening at the lower part of the stomach, through which the contents of the stomach pass into the duodenum. The duodenum is a horseshoe-shaped section surrounding part of the pancreas and the pancreatic duct, as well as ducts from the liver and gall bladder that open into it. The middle part of the small intestine, extending from the duodenum to the ileum, is called the jejunum, and the terminal portion is the ileum, which leads into the side of the first part of the large intestine, the cecum. The lining membrane, or mucosa, of the small intestine is especially suited for the purpose of digestion and absorption. The mucosa is folded; the folds are covered with minute mucosal projections called villi. Each villus is a small tube of epithelium surrounding a small lymphatic vessel, or lacteal, and many capillaries. Tiny glandular pits, called the crypts of Lieberkühn, open at the bases of the villi; these pits secrete the enzymes necessary for intestinal digestion. Digested carbohydrates and proteins pass into the capillaries of the villi and then to the portal vein, which enters the liver; digested fats are absorbed into the lacteals in the villi, and they are transported through the lymphatic system into the general bloodstream. The lining of the small intestine also secretes a hormone called secretin, which stimulates the pancreas to produce digestive enzymes.


The large intestine is divided into the cecum, ascending colon, transverse colon, descending colon, sigmoid colon, and rectum. The cecum is a swollen sac located in the lower right-hand portion of the abdominal cavity; it is very large in herbivorous animals. The two important parts of the cecum in humans are the vestigal vermiform appendix (see Appendicitis), which often becomes diseased; and the ileocecal valve, a membranous structure between the cecum and the small intestine that regulates the passage of food material from the small intestine to the large intestine and also prevents the passage of toxic waste products from the large intestine back into the small intestine. The ascending colon rises along the right side of the abdominal cavity; the transverse colon runs across the body to the left side, where the descending colon travels downward. The sigmoid colon is the S-shaped portion of the large intestine as it enters the pelvic cavity. The rectum, about 15 cm (6 in) long, is the almost straight, terminal portion of the large intestine. At the exit of the rectum, called the anus, is a round muscle, the anal sphincter, that closes the anus. The large intestine has a smooth mucosal lining (only the rectum has folds) that secretes mucus to lubricate the waste materials.
Food and waste material are moved along the length of the intestine by rhythmic contractions of intestinal muscles; these contractions are called peristaltic movements. The entire intestine is held in place in the abdominal cavity by membranes called mesenteries.



KIDNEY

Kidney, paired organ whose functions include removing waste products from the blood and regulating the amount of fluid in the body. The basic units of the kidneys are microscopically thin structures called nephrons, which filter the blood and cause wastes to be removed in the form of urine. Together with the bladder, two ureters, and the single urethra, the kidneys make up the body’s urinary system. Human beings, as well as members of all other vertebrate species, typically have two kidneys.
Like kidney beans, the body’s kidneys are dark red in color and have a shape in which one side is convex, or rounded, and the other is concave, or indented. The kidneys of adult humans are about 10 to 13 cm (4 to 5 in) long and about 5 to 7.5 cm (2 to 3 in) wide—about the size of a computer mouse.
The kidneys lie against the rear wall of the abdomen, on either side of the spine. They are situated below the middle of the back, beneath the liver on the right and the spleen on the left. Each kidney is encased in a transparent, fibrous membrane called a renal capsule, which helps protect it against trauma and infection. The concave part of the kidney attaches to two of the body’s crucial blood vessels—the renal artery and the renal vein—and the ureter, a tubelike structure that carries urine to the bladder.
A primary function of kidneys is the removal of poisonous wastes from the blood. Chief among these wastes are the nitrogen-containing compounds urea and uric acid, which result from the breakdown of proteins and nucleic acids. Life-threatening illnesses occur when too many of these waste products accumulate in the bloodstream. Fortunately, a healthy kidney can easily rid the body of these substances.

Kidney Structure 

The outermost layer of the kidney is called the cortex. Beneath the cortex lies the medulla, an area that contains between 8 and 18 cone-shaped sections known as pyramids, which are formed almost entirely of bundles of microscopic tubules. The tips of these pyramids point toward the center of the kidney. The cortex extends into the spaces between the pyramids, forming structures called renal columns. At the center of the kidney is a cavity called the renal pelvis.
The task of cleaning, or filtering, the blood is performed by millions of nephrons, remarkable structures that extend between the cortex and the medulla. Under magnification, nephrons look like tangles of tiny vessels or tubules, but each nephron actually has an orderly arrangement that makes possible filtration of wastes from the blood. The primary structure in this filtering system is the glomerulus, a network of extremely thin blood vessels called capillaries. The glomerulus is contained in a cuplike structure called Bowman’s capsule, from which extends a narrow vessel, called the renal tubule. This tube twists and turns until it drains into a collecting tubule that carries urine toward the renal pelvis. Part of the renal tubule, called the loop of Henle, becomes extremely narrow, extending down away from Bowman’s capsule and then back up again in a U shape. Surrounding the loop of Henle and the other parts of the renal tubule is a network of capillaries, which are formed from a small blood vessel that branches out from the glomerulus.

URINE PRODUCTION



Blood enters the kidney through the renal artery. The artery divides into smaller and smaller blood vessels, called arterioles, eventually ending in the tiny capillaries of the glomerulus. The capillary walls here are quite thin, and the blood pressure within the capillaries is high. The result is that water, along with any substances that may be dissolved in it—typically salts, glucose or sugar, amino acids, and the waste products urea and uric acid—are pushed out through the thin capillary walls, where they are collected in Bowman's capsule. Larger particles in the blood, such as red blood cells and protein molecules, are too bulky to pass through the capillary walls and they remain in the bloodstream. The blood, which is now filtered, leaves the glomerulus through another arteriole, which branches into the meshlike network of blood vessels around the renal tubule. The blood then exits the kidney through the renal vein. Approximately 180 liters (about 50 gallons) of blood moves through the two kidneys every day.
Urine production begins with the substances that the blood leaves behind during its passage through the kidney—the water, salts, and other substances collected from the glomerulus in Bowman’s capsule. This liquid, called glomerular filtrate, moves from Bowman’s capsule through the renal tubule. As the filtrate flows through the renal tubule, the network of blood vessels surrounding the tubule reabsorbs much of the water, salt, and virtually all of the nutrients, especially glucose and amino acids, that were removed in the glomerulus. This important process, called tubular reabsorption, enables the body to selectively keep the substances it needs while ridding itself of wastes. Eventually, about 99 percent of the water, salt, and other nutrients is reabsorbed.
At the same time that the kidney reabsorbs valuable nutrients from the glomerular filtrate, it carries out an opposing task, called tubular secretion. In this process, unwanted substances from the capillaries surrounding the nephron are added to the glomerular filtrate. These substances include various charged particles called ions, including ammonium, hydrogen, and potassium ions.
Together, glomerular filtration, tubular reabsorption, and tubular secretion produce urine, which flows into collecting ducts, which guide it into the microtubules of the pyramids. The urine is then stored in the renal cavity and eventually drained into the ureters, which are long, narrow tubes leading to the bladder. From the roughly 180 liters (about 50 gallons) of blood that the kidneys filter each day, about 1.5 liters (1.3 qt) of urine are produced.



OTHER FUNCTIONS OF THE KIDNEYS

In addition to cleaning the blood, the kidneys perform several other essential functions. One such activity is regulation of the amount of water contained in the blood. This process is influenced by antidiuretic hormone (ADH), also called vasopressin, which is produced in the hypothalamus (a part of the brain that regulates many internal functions) and stored in the nearby pituitary gland. Receptors in the brain monitor the blood’s water concentration. When the amount of salt and other substances in the blood becomes too high, the pituitary gland releases ADH into the bloodstream. When it enters the kidney, ADH makes the walls of the renal tubules and collecting ducts more permeable to water, so that more water is reabsorbed into the bloodstream.
The hormone aldosterone, produced by the adrenal glands, interacts with the kidneys to regulate the blood’s sodium and potassium content. High amounts of aldosterone cause the nephrons to reabsorb more sodium ions, more water, and fewer potassium ions; low levels of aldosterone have the reverse effect. The kidney’s responses to aldosterone help keep the blood’s salt levels within the narrow range that is best for crucial physiological activities.
Aldosterone also helps regulate blood pressure. When blood pressure starts to fall, the kidney releases an enzyme (a specialized protein) called renin, which converts a blood protein into the hormone angiotensin. This hormone causes blood vessels to constrict, resulting in a rise in blood pressure. Angiotensin then induces the adrenal glands to release aldosterone, which promotes sodium and water to be reabsorbed, further increasing blood volume and blood pressure.
The kidney also adjusts the body's acid-base balance to prevent such blood disorders as acidosis and alkalosis, both of which impair the functioning of the central nervous system. If the blood is too acidic, meaning that there is an excess of hydrogen ions, the kidney moves these ions to the urine through the process of tubular secretion. An additional function of the kidney is the processing of vitamin D; the kidney converts this vitamin to an active form that stimulates bone development.
Several hormones are produced in the kidney. One of these, erythropoietin, influences the production of red blood cells in the bone marrow. When the kidney detects that the number of red blood cells in the body is declining, it secretes erythropoietin. This hormone travels in the bloodstream to the bone marrow, stimulating the production and release of more red cells.



KIDNEY DISEASE AND TREATMENT



Kidneys are paired organs, each sharing equally the work of removing wastes and excess water from the blood. Remarkably, a single kidney can do the job of both if one kidney is lost through injury or disease. It sometimes occurs, although rarely, that a person is born with only one kidney. Such people are able to lead normal lives.
Diseases of the kidney range from mild infection to life-threatening kidney failure. The most common form of kidney disease is an inflammation of the kidney, called pyelonephritis. Most such inflammations are caused by a bacterial infection that starts in the bladder and spreads to the kidney. Sometimes an obstruction that interferes with the flow of urine in the urinary tract can cause the disease. Symptoms of pyelonephritis include fever, chills, and back pain. Antibiotic drugs are usually given to fight the infection, which can scar the kidneys and impair their function if left untreated.
Glomerulonephritis, another common kidney disease, is characterized by inflammation of some of the kidney's glomeruli. This condition may occur when the body’s immune system is impaired. Antibodies and other substances form large particles in the bloodstream that become trapped in the glomeruli. This causes inflammation and prevents the glomeruli from working properly. Symptoms may include blood in the urine, swelling of body tissues, and the presence of protein in the urine, as determined by laboratory tests. Glomerulonephritis often clears up without treatment. When treatment is necessary, it may include a special diet, immunosuppressant drugs, or plasmapheresis, a procedure that removes the portion of the blood that contains antibodies.


Kidneys are paired organs, each sharing equally the work of removing wastes and excess water from the blood. Remarkably, a single kidney can do the job of both if one kidney is lost through injury or disease. It sometimes occurs, although rarely, that a person is born with only one kidney. Such people are able to lead normal lives.
Diseases of the kidney range from mild infection to life-threatening kidney failure. The most common form of kidney disease is an inflammation of the kidney, called pyelonephritis. Most such inflammations are caused by a bacterial infection that starts in the bladder and spreads to the kidney. Sometimes an obstruction that interferes with the flow of urine in the urinary tract can cause the disease. Symptoms of pyelonephritis include fever, chills, and back pain. Antibiotic drugs are usually given to fight the infection, which can scar the kidneys and impair their function if left untreated.
Glomerulonephritis, another common kidney disease, is characterized by inflammation of some of the kidney's glomeruli. This condition may occur when the body’s immune system is impaired. Antibodies and other substances form large particles in the bloodstream that become trapped in the glomeruli. This causes inflammation and prevents the glomeruli from working properly. Symptoms may include blood in the urine, swelling of body tissues, and the presence of protein in the urine, as determined by laboratory tests. Glomerulonephritis often clears up without treatment. When treatment is necessary, it may include a special diet, immunosuppressant drugs, or plasmapheresis, a procedure that removes the portion of the blood that contains antibodies

Other common kidney disorders include kidney stones, which are small, crystallized substances, such as calcium, that form in the kidney or other parts of the urinary tract. Smaller kidney stones can pass out of the body on their own, although this can be painful. Larger stones may require surgery, or they may be broken into smaller pieces with sound waves in a procedure called ultrasonic lithotripsy.
The kidneys may be harmed whenever injury or disease affects the rest of the body. For example, diabetes mellitus (a disease caused by a malfunctioning pancreas that produces little or no insulin) can result in impaired blood flow through the kidneys. The bacteria that cause tuberculosis can travel from the lungs and infect the kidneys. Injured muscles can release large amounts of protein into the bloodstream, blocking the nephrons. Drug use, including long-term use of some prescription medications as well as illegal drugs, can also cause kidney damage. Certain birth defects may cause the kidneys to have abnormal shapes or to function improperly.
Treatment of severe kidney disease may include kidney dialysis, a procedure in which blood is circulated through a machine that removes wastes and excess fluid from the bloodstream. Some patients use dialysis for a short time, while their kidneys recover from injury or disease. Others must use dialysis for their entire lives or until they undergo a kidney transplant. Kidney transplants are the most common of all transplant operations and have excellent success rates. Unfortunately, there are not enough kidneys available for the people who need them. More than 38,000 people in the United States alone wait for a kidney transplant each year, and fewer than 12,000 of them receive this life-sustaining organ.
Tags:

Written by

Shamoeel, lives in Lahore, is a truthseeker and has a passion for getting and providing education in a manner that takes the students out of the tangled method and teaches them in simple, clear and relevant style.

 

Search

New! Online Quran Tuition

New! Online Quran Tuition
Tanzeem Ul Quran Online Academy, Learn Quran Online with tajwid and translation

Vote! for education

Revise with Shamoeel

because our content is relevant and valid!
Copyright © O level Study Guide | Designed by The MSUNA Project